Nanotubular surface modification of metallic implants via electrochemical anodization technique

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotubular surface modification of metallic implants via electrochemical anodization technique

Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely r...

متن کامل

Anodization: A Promising Nano-Modification Technique

As one of the valve metals (including Ti, Al, Ta, Nb, V, Hf, W), titanium is protected by a thin titanium oxide layer which spontaneously forms on its surface when exposed to air or other oxygen containing environments. This oxide passive layer is typically 2 to 5 nm thick and is responsible for the well-documented corrosion resistance property of titanium and its alloys. Because of this and th...

متن کامل

Surface modification for titanium implants by hydroxyapatite nanocomposite

Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the s...

متن کامل

Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Nanomedicine

سال: 2014

ISSN: 1178-2013

DOI: 10.2147/ijn.s65866